
Large-Scale Model-Driven Engineering of Web User

Interaction: the WebML and WebRatio Experience

Marco Brambilla and Piero Fraternali

Dipartimento di Elettronica e Informazione, Politecnico di Milano
Via Ponzio, 34/5. 20133 Milano, Italy

Abstract

This paper reports the experience of WebRatio, a company focusing on
Model-Driven Engineering (MDE) tools (WebRatio and WebRatio BPM)
and services since 2001. The adopted MDE approach is based on the trans-
formation of models expressed in a Domain Specific Language called WebML
(Web Modeling Language) into running applications, with the unique fea-
ture of creating not only the back-end data and business logic, but also the
Web/RIA front-end, without posing any limitation on the graphical and in-
teraction quality of the user interface. WebRatio has been applied in many
industrial projects, some of which have delivered large-scale enterprise appli-
cations, generated and maintained completely through MDE practices over
the years. In this paper we present the lessons learned within this experience,
we describe some success stories and show some quantitative information and
evaluation on the usage of the approach.

Keywords: Model-Driven Engineering, Code Generation, Web
Engineering, Service Oriented Architecture, BPM, MDE, Model-driven
Engineering, WebML, Web Modeling Language, IFML, Interaction Flow
Modeling Language, Experience, Lesson Learned, Evaluation, Software
Design, Visual Models, Software Engineering, Web, User Interaction

1. Introduction

Model-Driven Engineering (MDE) is the approach to system development
that exploits as main artifacts models, defined as abstract representations of
the system/product under construction. Models are customary in traditional
engineering disciplines, where they support the design and verification of a

Preprint submitted to Science of Computer Programming February 27, 2013

system/product before its realization and deployment. The application of
models to the software engineering industry is as old as the software itself, if
one considers that Data Flow Diagrams have been used since the inception of
programming, but it is not as pervasive as in other disciplines. Software mod-
els are normally used in the analysis and design phases, and then abandoned
in favor of programming during implementation and maintenance.

The resistance of software developers to the use of models during imple-
mentation and maintenance is motivated by the nature itself of the software
product and by the lifecycle of its development process: unlike other en-
gineering artifacts, software can be modified at low cost after deployment,
which makes it natural to perform change management directly on the source
code; on the other hand, very short development cycles and the difficulty to
formalize requirements and change requests, often stated qualitatively, favor
a trial-and-error approach where a system is released and then adaptively
fixed while in use.

Despite the above mentioned factors, in the past two decades MDE has
slowly made its way in the software industry, under the impulse of several
forces: software applications have become more pervasive, distributed, and
multi-platform than ever, which has called for approaches capable of factoring
out system knowledge from the source code, for greater reuse; the scarcity
of skilled developers in front of an increasing demand has prompted for a
quantum leap in productivity; last but not least, the industry has started
converging around a few mature and agreed upon standards (most notably,
OMG MDA and recently BPMN) favoring the creation of solid businesses
centered on MDE product and services.

However, MDE in the software industry is still far from meeting the goal
of supporting development across all the tiers of the application and all the
phases of development. Code generation from software models is taking
place, but is confined only to those aspects of the system where the model
is very close to the implementation (e.g., generating SOA technical artifacts
from the signature of a procedure) or where the semantics of the model
to code transformation is well understood (e.g., transforming a UML class
diagram into class skeletons, or an ER diagram into the SQL code for schema
creation).

The end-to-end generation of the application code of a general-purpose
application at the same level of quality of a hand-crafted solution, from the
user interface to data, business logic, and service connection logic is still
considered a very hard task, due to the excessive complexity and cost of

2

creating models detailed enough to be usable in practice for generating the
entire application.1 However, limiting the generation of code from models
only to one tier of the application (e.g., the data tier) or to a partial view
of the software (e.g., the interfaces of classes) greatly reduces the potential
benefits of MDE. The manual implementation of the non-modeled parts of the
application occurs independently of the model, which creates the well-known
problems of model-to-code alignment; tracing changes from the model to the
code and from the code to the models is overly complex, and breaks most of
the benefits of models during implementation and maintenance [Sel03].

This paper reports the experience of WebRatio [ABB+08], a company in
the MDE tool market, in facing the challenges of deploying MDE solutions in
the industry, with a focus on the model-driven design of user interaction and
on code generation across all the tiers of Web/SOA applications. The paper
is organized as follows: Section 2 provides an overview of WebRatio and
of its accompanying DSL for Web application design (WebML [CFB+02]);
Section 3 overviews the parallel evolution of the WebML language and of the
WebRatio development environment; Section 4 discusses the lessons learnt
from the joint design of the DSL and of its support tool; Section 5 presents
a sample of customer histories and reports some quantitative measures on
the WebRatio usage, together with some statistics on WebML models size
and development effort; Section 6 reflects on the success and failure factors
for MDE emerged from the WebRatio experience; finally Section 7 draws the
conclusions.

2. Model-Driven Engineering with WebRatio and WebRatio BPM

WebRatio is a spinoff company of an academic institution (Politecnico
di Milano). It was born during a European cooperative research project in a
period of time (1999-2001) when the Web was changing the way in which soft-
ware was produced. The company produces a tool (called WebRatio itself)
for model-driven development of enterprise Web applications [ABB+08].

When, in the early 2000’s, companies faced the challenge of deploying an

1Life- or mission-critical applications are obviously an exception; for these systems, the
importance of verification justifies the investment in models accurate enough for complete
code generation. In the sequel, we refer to non life/mission-critical applications, where the
use of models should meet cost-effectiveness criteria not driven by the unacceptable costs
of detecting errors after deployment.

3

entirely new class of applications (B2C web sites), the motivation of WebRa-
tio was changing the way in which people developed Web applications, by
creating a simple model capable of expressing any kind of Web applications
(B2C, B2B, B2E) and a code generator powerful enough to produce from the
model the same code that a skilled Web programmer would have written by
hand. At the time, this idea was considered quite eccentric and against the
market trend, which was seeing the birth and growth of large monolithic Web
do-it-all products, which the users had to customize to their requirements.

2.1. The Vision

The vision of the MDE tool WebRatio is to enable fast and cost-effective
delivery of custom enterprise solutions by means of development tools that
integrate application modeling and component-based development.

Application modeling refers to the capacity of expressing the functional
and non-functional requirements of the application and of the architecture
design in a simple yet precise manner, which is amenable for both communi-
cation with stakeholders, granting early validation and less re-design cycles,
and for automatic code generation across all architecture tiers, so to ensure
model-to-code consistency along the development lifecycle.

Component-based development refers to the capacity of the model and
of the transformations (model-to-model and model-to-code) to reflect and
reuse any artifact that is deemed valuable by the customers to preserve pre-
existing IT investment. Examples of artifacts that must be reused include:
database schemas and content, legacy systems, business components, specific
software functions at any tier (from database stored procedures to JavaScript
functions) interface widgets and style templates.

2.2. The Development Process and Roles

Figure 1 illustrates, using the BPMN notation, the application develop-
ment process and highlights the tasks supported by the WebRatio BPM and
WebRatio tools.

In the requirement analysis phase, the business stakeholders and the soft-
ware analysts jointly collect data, functional, and non functional require-
ments. Non-functional requirement incorporate the user interface layout and
look&feel, which has a prominent role in Web development; such require-
ments are collected in the form of mock-ups, produced by a graphic designer

4

Figure 1: The development process with WebRatio and WebRatio BPM.

and expressed in a Web compatible format, typically HTML. When the appli-
cation is process-driven, requirements include the business process modeling
phase, expressed in BPMN 2.0.

The design phase maps requirements into the design of the front-end and
back-end of the application, the latter addressing the connection with the
data tier and with the business services. The application design is expressed
in the Web Modeling Language (WebML) [CFB00], a Domain Specific Lan-
guage for general-purpose Web/SOA applications. In the implementation
phase, WebRatio transforms the WebML models into the application code.

Development follows an iterative cycle, with strong emphasis on early
prototyping. Prototypes can be produced at two levels.

• Business process prototypes are generated directly from the BPMN 2.0
schema of a business process and incorporate the complete control logic
of the process, including the user roles, the precedence constraints and
task activation logic, a user interface that permits each role to sub-
mit the parameters required by human tasks, and a Business Analysis
Monitor for the process manager to check the status progress.

• Application prototypes are generated from WebML models and graph-
ical mock-ups and, depending on the completeness of the model, rep-
resent at a variable degree of precision the application user interface

5

and its interaction with the back-end data and services. In WebRa-
tio, there is not a technical distinction between a prototype and the
final deployed version of the application: when the prototype covers all
functional and non-functional requirements, it is used for the delivery.

Figure 2: The Development Roles with WebRatio and WebRatio BPM.

Figure 2 shows the roles that participate to the development process, the
artifacts they produce, and the typical timing of their engagement in the
release cycle of an application.

2.3. The Models and Notations
Application modeling in our approach exploits the Web Modeling Lan-

guage (WebML), a Web-oriented DSL designed with the initial inspiration
of replacing the manual sketches of Web site maps made by designers with
an equivalent yet formal notation amenable to code generation. As a con-
sequence, WebML builds upon concepts close to Web developers, such as
domain objects, pages, links, data and business logic components.

For the purpose of illustration, we will consider as a running example
a simplified Web application consisting of a product catalog, with a Web
interface for content publishing, directed to the general public, and an ad-
ministrative interface for content management, used by the content owners.

Content objects are specified using the Entity-Relationship data model
(or, equivalently, UML class diagrams), comprising classes, entities, attributes,
single inheritance, binary relationships, and data derivation expressions.

6

TechRecord

OID
colors
dimensions

Product

OID
code
name
description
price
thumbnali
highlighted

Combination

OID
description
price
photo
highlighted
startdate
enddate

BigImage
OID
description
image Category

OID
name

Store

OID
addres
map
email
photo

1:1

1:1

1:1

1:N

0:N 0:N

0:N

1:1

Figure 3: The data model of the running case.

Figure 3 shows the data model of the running example, with the objects
mentioned in the requirements and their associations.

The application front-end is specified using the hypertext model, which
has a hierarchical organization: each application corresponds to a site view,
internally structured into areas, which in turn may contain sub-areas and
pages.

Multiple site views can be associated to the same data model, e.g., to
represent applications delivered to different actors or designed for different
access devices (Web, mobile phones, PDAs). Site views, areas and pages
are not only units of modularization, but also govern access, which can be
selectively granted to each individual module based on the user identity and
subscription to groups. A first kind of navigation, which does not depend
on page content, can be expressed over site views, areas and pages: if a
page or area is marked as “landmark” (L), it is assumed to be reachable
(through suitable navigation commands) from all the other areas and pages
in the same module; if a page or area is marked as “default” (D), it is
assumed to be displayed by default when the enclosing module is accessed;
if a page is marked as “home” (H), it is displayed by default when accessing
the application.

Figure 4 shows a small excerpt of the hypertext model of the public site
view of the running example, with the areas and pages mentioned in the
requirements, annotated with the navigation markers.

The public site view contains one top-level area (ProductArea) and two
top level pages (Home and Stores Page). Page Home is marked as the home
page of the site view (H) and is also a globally reachable landmark page (L).
The Stores page and the Product areas are marked as globally reachable (L)
too.

7

Figure 4: The hypertext model of the public site view.

Pages are the basic interface modules: they can be structured in sub-
pages and comprise content units. A content unit is defined as a component
that publishes some content in a page; the published content can be extracted
dynamically from the objects specified in the data model or specified stati-
cally in the hypertext model (e.g., an entry form consisting of multiple input
fields). In addition to content units, WebML comprises operation units, de-
fined as components for executing arbitrary business logic. Operation units,
unlike content units, do not publish content and thus are positioned outside
pages.

Components (content and operation units) may have input and output pa-
rameters (e.g., the OID of the object to display or modify, the username and
password for authenticating the user, etc.). Parameter passing is expressed
as a side effect of navigation: components are connected by links, which
have a threefold purpose: enabling the user’s navigation, supporting the pas-
sage of parameters, and triggering the execution of components. Therefore,
a WebML hypertext can be essentially described as a graph of parametric
components, connected by links, in which some components publish content
and are contained within pages, some other components perform business
actions, and are triggered from links emanating from pages. Links express
the “wiring” of the application. Five kinds of link are defined: normal links,
denoted by solid arrows, allow both navigation and parameter passing; trans-

8

port links, denoted by dashed arrows, allow only parameter passing and are
not rendered as navigation devices; automatic links, denoted by the [A] sym-
bol, are normal links automatically “navigated” by the system on page load;
OK and KO links are output links of operations, respectively followed after
execution success or failure.

In Figure 4, the home page contains one data-driven content unit (Pro-
ductOfTheDay), displaying the product of the day, and one static content
unit, the LoginForm entry unit, which comprises two fields for inputting the
username and the password; the entry form is connected by a link to a lo-
gin operation (Login) placed outside the home page, for authenticating the
employees and forwarding them to the protected content management appli-
cation (specified as a distinct site view). The outgoing link of the entry unit
shows the parameters transferred from the entry form to the login operation
unit. The Stores page contains two other content units: the All Stores index
unit shows a selectable list of stores and the Store Detail data unit displays
data on a chosen store. Interaction is expressed by the link connecting the
two units, which permits the uses to choose the store to display. Since the
link is tagged as automatic ([A]), on page load one default store is displayed
in the Store Detail component.

The rest of the hypertext in Figure 4 has a similar organization, with
pages comprising several kinds of content units connected by links.

2.4. The Tool and Architecture

Application development with WebML is supported by WebRatio. Web-
Ratio supports all the technical development tasks: declaring the data sources
and Web services used in the project, forward and reverse engineering of the
data model, presentation specification through page mockups, code genera-
tion for the Java Enterprise Edition platform, and application deployment
onto a private infrastructure, a public, or a hybrid cloud.

3. Language and Modeling Tool Evolution

The history of WebRatio spans across a decade that has seen a dramatic
change in the way software applications are built, which can be summarized
in three fundamental factors that impacted the evolution of WebML and
WebRatio:

9

Figure 5: Evolution of WebRatio and WebML

• The progressive consolidation of the Web as an application development
demanded the full support and follow-up of the HTTP, HTML and
XML, to ensure universal access and application interoperability.

• At the front-end, the multiplication of access devices led to the increase
in the number of interaction styles to be supported (from the original
point-and click interaction of the Web 1.0, to the current gestural in-
terfaces of tablet and mobile applications).

• At the back-end, Business Process Models emerged as a uniform way
of representing cross-organization functionality, and Service Oriented
Architecture as the technical vehicle for deploying process enactment
on top of heterogeneous IT infrastructures. This trend intersected with
the advent of application frameworks, which progressively became an
important tool to better support cross-organizational architecture and
development uniformity.

These change drivers put much strain on a DSL born for “capturing the
features of the Web”, and produced the timeline shown in Figure 5.

The evolution of the language has been rather intensive in the first years
(1999-2001). As noted elsewhere [KP09], it is difficult for language designers
to get it right at the first attempt, and practical usage of a DSL is an essen-
tial source for improvement. WebML has undergone several major revisions.

10

The initial version of the language was put to work, even before the spinoff of
the company, on a medium scale industrial application, with very stringent
time requirements [FCTT06]. This effort validated the core nucleus of the
language concepts (especially, the content and operation units), which were
profoundly revised to increase expressive power and orthogonality. The les-
son learnt at this stage was: covering all the functional requirements of the
application at hand and doing so without a proliferation of constructs.

The second stage of evolution was marked by the start of commercializa-
tion of WebRatio and by the corresponding inception of usage by customers
(2001). The key revisions were induced by the need of accommodating do-
main concepts (mostly business and presentation logic) generated outside
the DSL design team. The corresponding major release, which included
the notion of plug-in components in the DSL and plug-in rules in the code
generator, was probably the most profound revision and took place when
an already substantial installation base was deployed. The use of XML to
encode WebML projects allowed WebRatio to use standard document trans-
formation technology (first XSLT, then Groovy) to support the migration of
very large and complex projects. The Acer B2C and B2B portals and content
management applications, described in [FCTT06], were successfully ported
to the new version of WebML, and since then hundreds of projects have been
maintained over the years across the new releases of the DSL. The lesson
learnt at this stage was: plan for extensibility since the beginning of the DSL
design and provide support for automatic and seamless project migration to
subsequent language versions.

The third wave of revision was aimed at better support to enterprise ap-
plication integration (from 2005). Experience with customers demonstrated
that most often the development of a Web front-end was accompanied by
the need of migrating or integrating back-end legacy systems, an effort that
demanded the capacity of representing the interplay between the user in-
teraction, the data tier and the services that surrounded the legacy or third
party applications cooperating to a business process. This shift of focus from
pure Web front-end modeling to a hybrid model of the Web front-end and of
the SOA architecture backing the user interface was addressed by extending
the notion of component, already present in WebML in the form of business
functions called synchronously, to the broader case of loosely-coupled ser-
vices, called synchronously or asynchronously. Here, the lesson learnt was:
do not try to fit in the model a feature that is too far from the initial concept;
if necessary represent unmodeled components (e.g., complex SOA orchestra-

11

tions) at a high level and refer to them as black boxes.
The last round of change was the long-awaited introduction of a modular-

ization construct (2009), to overcome the model cut&paste behavior observed
in large projects, a work-around frequently adopted by modelers to overcome
the absence of a linguistic mechanism for defining a reusable piece of model
and including it by reference in a larger model. Such an addition was far
from trivial, because a reusable module could be anything, from a piece of
interface, to a piece of business logic, or more interestingly, a hybrid of the
two things, expressing the interface and business logic necessary to perform
a function. The lesson learnt was: as a DSL matures, plan for model reuse
and cross-cutting concerns.

Parallel to the evolution of WebML, also the WebRatio tool suite and
the company’s market positioning have progressed. The first important im-
provement was the incorporation of a standard Web framework as the target
of code generation (Struts was adopted due to its popularity and stability).
This demonstrated to customers the openness of the runtime; if code could
be generated for Struts, it could be generated for any other software architec-
ture. A second major revision, which took place in 2007, was the replacement
of the code generation technology (from XSLT to Groovy) and the adoption
of Eclipse as the base for the IDE. The former choice was motivated by
scalability of the code generators. The latter was instead a repositioning
w.r.t. code developers: adopting the Eclipse workbench created a seamless
environment where modelers and component programmers shared the same
technical space. Component developers could create their custom units from
within the model-based environment, include them in the project, generate
the code and debug the component, all in one place. At the same time,
modelers could double-click on any model component and immediately see
the code corresponding to the selected concept. This integration, although
may not appeal to the purist, favored the adoption of MDE by programmers,
who could see WebRatio and MDE in general as a way to organize, and not
to replace, their work. This also paved the way to implementing a com-
ponent reverse-engineering functionality, whereby programmers could easily
transform an implementation level artifact into an abstract model construct,
under the guidance of a wizard that assisted them in the not-so-familiar task
of abstracting the concrete code into a high-level WebML content or opera-
tion unit. The development of the Eclipse-based version of the tool has been
a major development effort, because it required to re-implement basically
from scratch all the design-time structure of the tool. The tool has been

12

developed on top of Eclipse GEF2, since at the time the limited stability of
EMF-based development prevented the company from investing on that.

The last important line of evolution was the integration of Business Pro-
cess Management (in 2010), which expanded the reach of WebRatio to the
business analysis domain, a sector where models are already well-accepted by
companies but generative MDE is still at the infancy, because process models
are most frequently interpreted by ad-hoc runtime engines and GUIs for pro-
cess enactment are created using implementation-level form editors. Here,
the challenge was the construction of a consistent MDE approach, based on
fast prototyping and full code generation. The solution adopted by WebRa-
tio (illustrated in Figure 6) is to keep the two modeling languages orthogonal
and to generate default WebML models from process models. This approach,
which is still unique in the market, exploits model-to-model transformations:
the BPMN process schema is transformed into a set of WebML application
models that represent the user interfaces for the process actors to perform
their task.

Process control and user interaction design are kept orthogonal, so that
the two models can be evolved independently. Orthogonality is obtained by
separating the concerns between: the process design and control (pertain-
ing only to the BPM models), and the user interaction (pertaining to the
WebML models). The BPMN model describes the process control and the
granularity of the business activities, while the WebML model expresses the
detailed design of the internal behaviour of each activity in terms of user
interface and back-end logic invocations. The model transformation from
BPM to WebML does not embed the process control in the WebML logics;
it simply generates the appropriate user interaction containers (placehold-
ers) for implementing each activity in the process. These containers though
are not left empty, but are generated already with a set of default pages,
page components and operations that depend on the activity type and pa-
rameters (e.g., WebML units for updating process flow objects, for sending
messages across process pools, for asking the needed user input based on the
activity parameters). The WebML model of the activity execution interface
also contains the links for suspending/terminating the activity: these links
trigger components that inspect suitable process advancement metadata and
decide the activity to activate next, based on the BPMN process schema.

2http://www.eclipse.org/gef/

13

Figure 6: The two stage model-to-model and model-to-code approach of WebRatio BPM

Furthermore, the WebML model comprises standard process configuration
and process monitoring pages implementing BAM (Business Activity Moni-
toring) features, which are independent on the specific process model. The
generated default user interactions can already enact the specified business
processes or, if needed, can be refined and updated by the WebML designer,
without altering the control flow of the process. In this way, the process
schema and the Web application interface for executing activities are kept
separated and can be evolved independently.

As a last remark on the history of WebML and WebRatio, we underline
how Figure 5 also shows a case where the tool evolution anticipated the
DSL evolution. This happened with the AJAX code generator, which was
delivered before the RIA extension of WebML. The reason is that AJAX
was initially perceived as incremental addition to the capability of HTML,
mostly for better interface usability, and thus relegated to the role of yet
another technology for presentation templates, which are not modeled but
used as part of the code generation process. However, it soon become clear
that AJAX was part of a more substantial revolution, the unification of
Web and desktop applications, that demanded a thorough reconsideration of
the front-end modeling language. The results of the study on the WebML
RIA extensions are documented in [FCBC10] and the engineering effort for
implementing the required changes in the model and in the code generators
are expected to produce a major release in 2012.

14

4. Lessons learned on DSL design

The original principles adopted in the design of WebML put special em-
phasis on three aspects, which were considered prominent for achieving de-
velopers’ acceptance: 1) expressive power : the model should be capable of
expressing Web applications comparable in complexity to industrial-strength
systems developed manually; 2) ease of use: the model should be easy-to-
learn for developers not skilled in software engineering; 3) implementability :
the model should encompass enough information to permit the generation of
code for all the tiers of a dynamic Web application. Code generation should
produce optimized code as far as possible. In the following paragraphs we
comment on the essential choices taken in the design of the language.

4.1. Model Boundaries.

The approach to defining model boundaries has been rather crude: the
model contains the minimal number of concepts necessary to generate code.
This led to the partition of the concepts into the three perspectives of the
data model, hypertext model, and presentation; the latter perspective gath-
ers all those aspects that have to do with aesthetics and interface usability
and is not expressed diagrammatically, but by means of annotated examples
incorporated in the code generation process. A notable feature of WebML
is the absence of a separated sub-model for the business logic. Server-side
business logic is partly encoded in the data model (in the form of declara-
tive specifications of derived data) and partly in the hypertext model (in the
form of black-box content and operation units, which can represent compo-
nents with arbitrary functionality). This choice simplified dramatically the
model, to the price of two (not necessarily negative) unforeseen phenomena:
1) the need of an extension mechanism for introducing in the DSL custom
units encoding user-defined business logic; 2) the complexity growth of the
presentation code generator, which was used to capture, beside aesthetics,
also client-side behavior (e.g., JavaScript event handling), not expressible
otherwise.

Another essential aspect of model definition is the compact representation
and efficient management of inter-model references, which are ubiquitous: the
hypertext diagram references the data model (e.g., for data extraction and
update), and the presentation refers to the hypertext model (e.g., for content
positioning in pages). Figure 7 shows a reference from the hypertext model
to the data model: the AllStores index unit and the StoreDetails data unit

15

Figure 7: A page with an index unit for selecting a store and a data unit for displaying
its details (left). The same page with abbreviated notation (right).

refer to entity Store, which provides the components’ content. The reference
to the data model element is simply realized by means of a typed property
in the hypertext model.

Level of Abstraction. A WebML specification is far more abstract than
an object-oriented representation of the generated code. A model concept
is normally mapped onto multiple software artifacts, possibly residing at
different tiers. For example, a WebML page, its unit and links are indeed
a compact representation of multiple artifacts: 1) The data extraction code
in the data tier (stored procedures, queries, EJB finder methods, etc..); 2)
The object(s) storing the content in the business and/or presentation tier
(entity EJB, javabeans); 3) The action class decoupling the request from the
business tier objects; 4) The business service orchestrating the computation
of the page content; 5) The JSP executable tags translating object content
into page markup. The decision of keeping a high level of abstraction traded
realism for compactness. To the developer’s eye the WebML model of a page
mixes things that in reality stand apart. However, if the ultimate purpose
of modeling is to generate the code, the ease of building up a complete
model should prevail on the realism of the representation, provided that
the meaning of each abstract concept is known and the behavior of element
composition predictable. Considering that a small-size project may typically
consist of tens of pages comprising hundreds of components, it is easy to see
that raising the level of abstraction, while preserving semantics, is crucial to
achieve practical usability. Realism is reintroduced at the tool level: double-
clicking on any model element shows the code that has been generated for
that component, bringing back the level of detail natural for programmers.

Behavioral Semantics. A quite radical aspect of model design, which

16

departs WebML from traditional OO modeling, is the absence of a separate
behavioral model. Behavioral aspects are embedded in the hypertext model,
which can be regarded as a mix of a structural and of a dynamic diagram:
on one hand, it represents the composition structure of the front-end (e.g.,
nesting of pages and containment of components within pages); on the other
hand, it expresses event handling (the navigation of links that changes the
state of the application).

All WebML models have a fixed operational semantics for representing
event handling and state change, which therefore needs not be specified ex-
plicitly by the designer application by application. In essence, a hypertext
model is equivalent to an extended finite state machine [BCF02], in which
events capture user’s interactions and system generated events, and transi-
tions describe the propagation of computation from one component to an-
other one. Conditions on transitions express the flow of control, for example
the order in which components must be executed depending on the avail-
ability of user’s input or of system-provided parameters. The provision of
a standard, application-independent operational semantics is a cornerstone
of the design of WebML: the “in the large” semantics describes the general
functioning of the Web application as a network of cooperating components;
the “in the small” semantics describes how individual components work. The
former is standardized and developers need not address it; the latter is treated
as a plugin to the model: developers are requested to understand how the
predefined WebML components work and define their own components by
respecting a few basic rules requested by the “in the large” semantics (essen-
tially, each component should declare its input and output parameters and
optional default rules). This approach resembles the notion of framework at
the coding level, raised to a more abstract level. Yet the purist, when faced
with a WebML diagram, will always ask: “where is the dynamic model”?

Ergonomics. The success of a model-driven method is tightly connected
with its practical usability. If editing the model is more cumbersome than im-
plementing functionality in the code, developers will hardly switch to MDE.
The evolution of WebML is characterized by innumerable revisions aimed at
optimizing the performance of modeling, whose common principle is “every-
thing that can be reasonably inferred from the context must not be specified
explicitly”. A notable example occurs with parametric components and pa-
rameter passing along links. Such a feature is the backbone of hypertext
modeling and occurs repeatedly in any application model. To alleviate the
developer’s task, WebML provides default rules whereby 80% of parameter

17

passing is inferred from the context. The notation on the right part of Figure
7 exemplifies this idea. The AllStores index unit has a single output parame-
ter (X) of type (Store), the entity underlying the component; the StoreDetails
data unit has a parametric selection condition (i.e., a query) determining the
object to display ([OID=X]), which makes use of the parameter associated
with the input link: in this way, the data unit shows exactly the object chosen
in the index unit. By inference, the model in the left hand side of Figure 7 is
equivalent to that in the right hand side of Figure 7, in which the parametric
selection condition and the parameter passing on the link are omitted. This
simple default rule spares two editing actions per link, which results into a
substantial reduction of the model editing effort.

Openness. The last far-reaching design choice concerned the evolution of
the model. Being a DSL, WebML was initially conceived as a closed language,
comprising all the primitives deemed necessary for building Web applications.
This choice soon proved ineffective: the extension of application functional-
ity constantly demanded for language revisions. A major breakthrough was
achieved with the definition of a standard model extension mechanism, which
transformed WebML into an open component-assembly language. The se-
mantics was revised so that developers could define their own components, by
wrapping any existing piece of software, and mix them freely with the built-
in WebML units. This required a simple standardization of the component
external behavior to make it comply to the (very minimal) requirements of
the standard component orchestration semantics; each content and operation
unit must simply declare its input and output interfaces, and the rules for
inferring parameter passing and content selection conditions. After such re-
vision, the standard component orchestration semantics, coupled to libraries
of domain-specific components, proved adequate to the modeling and auto-
matic implementation of applications in the most disparate domains: mobile,
digital television, Web service interaction, workflow management, and so on.

5. Success Stories and Quantitative Measures from the WebRatio
User Base

5.1. Success Stories

In 12 years, WebRatio has been used by many developers in the industry
and academia. The sectors where WebRatio is currently used span from
financial and banking to utility, fashion and furniture, public transportation,
software integration, and education. In this Section we summarize some of

18

the most important industrial success stories and the advantages perceived by
the customers in various scenarios. Success story reports on various customer
cases are available online in the company’s Web site.3 The histories in this
subsection do not constitute sufficient statistical proof for generalized claims
on productivity, but we think are useful at least as anedoctal evidence on
the advantages of the approach.

5.1.1. Acer

The Acer Group is a family of four brands – Acer, Gateway, Packard Bell
and eMachines – whose multi-brand strategy allows each brand to offer a
diverse set of characteristics that targets different customer segments in the
global PC market.

WebRatio has been applied to address two needs: the first one is to quickly
and continuously adapt its business processes to the latest enterprise mar-
keting strategies. Acer deployed a BPM-based Web application developed
with WebRatio for dealing with the complex (and continuously evolving) in-
ternational approval procedures for marketing and commercial materials of
the enterprise. This application has been exploiting both BPM modeling and
WebML modeling. The online application is able to support a huge traffic
rate (11+ million visits per month).

The second need is to provide high quality B2B and B2C Web based
customer services. Acer created with WebRatio a B2B and B2C website
with CMS and support in 12 languages (the current version is visible at
http://www.acer.com). The first version of the application was developed
in just 22 weeks from the first brainstorming to the final deploy. A detailed
report on this experience is available in [ABB+07], which quantitatively high-
lights also the advantages in terms of effort and cost of maintenance.

Estimates and assessments after 10 years of experiences with WebRatio
show that with respect to the previously adopted tools and methods (non
MDE-based) the productivity indexes are three times higher. The develop-
ment process and the deployed system are currently controlled and managed
entirely within the company by a very small group of people able to handle
complex applications and easily deal with every request for changes. With
respect to non-MDE techniques used in other parts of the IT infrastructure
and with respect to externalized maintenance and evolution activities, the

3http://www.webratio.com.

19

maintenance cost is reduced by 80%.

5.1.2. GTT

GTT (Turin Transportation Group) is a public company owned by the
City of Turin in Italy. It provides local public transport and more in general
mobility management serving 190 million passengers every year.

WebRatio has been used for developing a new e-ticketing system (avail-
able at http://ecommerce.gtt.to.it and serving 64,000 daily passengers) pub-
lished on-line in only 2 months. The application comprises 100 page tem-
plates (WebML pages) and 1215 WebML units. The iterative and quick
prototyping approach supported by WebRatio allowed GTT to implement
a virtuous cycle of development and testing, and to make a web solution
tailored to the company needs with limited cost and time-to-market.

GTT customers can log-in in the reserved area by typing the microchip
code printed on their personal card and they can buy the pass with their
credit card, can manage their own personal data, check pass validity and
browse an archive page containing information about their subscription his-
tory.

5.1.3. A2A

A2A is a multi-utility company buying and selling wholesale electric
power. The management of electric power was previously handled by traders
who relied excessively on individual productivity tools and/or poorly inte-
grated local functional applications.

WebRatio has been used for developing the Integrated Energy Manage-
ment System that replaced individual productivity tools used by traders for
the management of electric power. The quick prototyping approach offered
by WebRatio allowed the involvement of actual users in the development
process. A2A produced an application able to manage the lifecycle of energy
contracts only 6 months after the initial meeting with WebRatio, with a time
to market that took one-third of the time estimated in case of adoption of a
traditional development.

The essential functions of the application are: the management of electric
power contracts; the management of ”green package” contracts; the manage-
ment of natural gas contracts; the management of the variable rate curve
of both electric power contracts and gas contracts; the management of mar-
ket indices; and the exporting/importing of ad-hoc statistical reports from
different systems.

20

5.2. Quantitative Measures

This Section presents some quantitative information on the projects size
and effort, at the purpose of providing some intuition on the scale of the ad-
dressed projects, on the size of the corresponding models and on the number
of modeling artifacts used in the modeling, and on the way developers use
WebRatio and WebML in their activities.

5.2.1. Industrial Projects

In this section we report some measures of 14 typical industrial projects
developed using WebRatio. Projects have been chosen in a way that allows to
appreciate the diversity in size and required effort, as described below. Our
aim here is not to assess statistically valid measures of performance for the
approach, but instead to give some hints on the experiences achieved in these
years. Notice that project size is measured in terms of WebML pages and
WebML units, only roughly corresponding to the traditional concepts of page
template and widgets, because the MDD approach, the highly reuse-oriented
WebML primitives (modules, master pages, and so on), and the tendency
towards the one-page-application paradigm can make a single WebML page
correspond to several templates developed by hand.

1"

10"

100"

1000"

10000"

100000"

10" 100" 1000"

N
um

be
r'o

f'u
ni
ts
'

Number'of'pages'

M
an

2d
ay
s'p

er
'p
ag
e'
an

d'
pe

r'u
ni
t'

Figure 8: Relation between the number of WebML pages and number of units in a set of
14 industrial projects (logarithmic scales).

21

0"

5"

10"

15"

20"

25"

30"

35"

1" 2" 3" 4" 5" 6" 7" 8" 9" 10" 11" 12" 13" 14" ProjectID"

#"units"per"page"

Figure 9: Average number of WebML units per page in a set of 14 mid- to large- scale
industrial projects considered in our analysis.

To give a hint on the size of typical industrial WebML projects, we graph-
ically represent some dimensions: Figure 8 shows the relation between the
number of WebML pages and of WebML units in each project; Figure 9 shows
the average number of WebML units per page in each project. By looking
at the diagrams one can see that the two sizes are basically proportional,
although variations with respect to the linear growth are significant. The
number of units per pages varies a lot depending on the application: this is
basically due to the high diversity in the UI complexity in the different ap-
plications. This represents one of the major difficulty for correct estimation
of effort, as we will discuss later.

Figure 10 shows how the cost of development of modeling items (namely,
WebML units and pages) varies depending on the overall effort dedicated
to the project, measured in man-days (after removing the outliers). As one
can notice, there is no direct correlation between the total effort in a project
(which is also a rough measure of its size and complexity) and the average
effort put in the development of each page or unit. On one side, projects with
very similar (or even identical) size may encompass very different efforts per
page or per units, while projects whose size is significantly different may

22

0"

0.02"

0.04"

0.06"

0.08"

0.1"

0.12"

0.14"

0.16"

0.18"

0.2"

30" 300" 3000"

Eff
or
t&(
m
an

/d
ay
s&p

er
&u
ni
t)
&

Effort&per&project&(man/days)&

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

30" 300" 3000"

Eff
or
t&p

er
&p
ag
e&
(m

an
/d
ay
s&p

er
&p
ag
e&

Effort&per&project&(man/days)&

Figure 10: Cost of pages and units in terms of man-days, depending on the overall effort
associated to a project.

require similar efforts per units or per page.
However, an important evidence is that the cost of each page always

oscillates between half and one man/day, while the cost of a unit is between
0.04 and 0.14 man/days.

Generally speaking, our experience shows that the high variability in
requirements undermines the possibility of extracting numerically significant
trends in productivity and sizes. One of the main reasons of that is the weight

23

of the graphical interface design, which strongly affects the overall effort
dedicated to a project and therefore extremely complex applications with
simple interfaces may result in higher productivity measures than simpler
applications that however require complex graphics and interaction widgets.

Despite this, the WebRatio company is now able to estimate the effort
of new projects with remarkable precision (error in the order of 10-20%,
significantly lower than typical estimates done in the software engineering
field). This is obtained also thanks to the detailed knowledge and experience
of the analysts that are able to assess the complexity of the expected graphics
and user interfaces with good precision.

The precise measure of the cost of pages and units contributes to this
results, as our estimates can now rely on a gross cost of 1 man/day per page
and/or 0.1 man/day per unit. The expertise of the analysts stands in under-
standing, for each core requirement, the number of pages to be implemented,
and their complexity (in terms of units). This allows to quickly estimate the
total cost, thanks to the effort values above.

5.2.2. Usage Data

To complete our overview on the WebRatio tool usage, we provide also
some information on how developers exploit the tools features during their
work. This analysis is possible thanks to the fact that the tool lets the
developer decide if they want to automatically share the usage statistics
with the tool vendor through the internet.

For privacy reasons, only coarse grained information is collected. How-
ever, we think they provide interesting insights on what is more useful for
the development.

The period of time we report on is from May 2010 to February 2012. The
users that agreed to send their usage data are 7,864. Among them, we se-
lected a subset of users that used the tool in at least 5 different working days
during the analysis period, to remove the bias of people that only opened
WebRatio a few times after they downloaded it for evaluation purposes. This
reduced the set of the analysis to 1,498 users. The resulting statistics are
reported in Table 1. Numbers show that people are using intensively the
code generation feature (either for generating excerpts or entire projects),
while they use much less the one-click complete generation and deployment
procedure. Also some additional features such as warning checking and doc-
umentation generation are less used. While the latter could be expected,
because documentation is not something one generates at every step of the

24

Description Value
of times the tool has been opened daily 1.79
of daily code generations 11.76
of 1-click generation and publishing of the application 0.26
of checks of the modelling warnings 2.09
of checks of graphical layout warning 0.11
of automatic generations of the documentation 0.02

Table 1: Average daily values of usage statistics for the WebRatio MDE tool.

modeling, the very limited use of warning checking is somehow surprising.
This may either mean that users are experts of the WebML language, or
that they feel it as simple and thus do not sense the need for going through
the warning analysis, or they rely on the code generation and they tend to
identify errors while executing the generated application. This also entails
the fact that the way or granularity in which warnings are reported is not
deemed useful or productive.

6. Influential Factors and Issues in Deploying MDE in the Industry

In this Section we summarize the factors that have been most important
in achieving the acceptance of MDE by customers, considering both technical
and commercial aspects.

6.1. Technical Factors

The technical factors that we deem crucial in achieving the acceptance of
our MDE approach by customers are:

• Extensibility of the model : given the nature and goal of WebML, i.e.,
representing any Web/SOA application with domain specific concepts,
this aspect has been a key enabler. The main trade-off to face was be-
tween the excessive proliferation of built-in concepts, which would have
made the language difficult to learn, and the over-generalization, which
would have led to a lack domain expressivity similar to that of general
purpose OO models. The solution we pursued was to specify as early
as possible the base semantic rules (a kind of common denominator) of
domain components, and then let adopters expand the language with
their own concepts respecting such rules.

25

• Quality of the generated code: generative MDE faces a barrier of mis-
trust in the quality of the generated code, which is inevitably perceived
as less performing than the highly optimized code that developers can
write using all the tricks of the trade. This obstacle was overcome in
two ways. First, the code generation used as targets two of the most
popular and appreciated software frameworks: Struts for the presenta-
tion tier and Hibernate for the data tier. This choice reduced the Not
Invented Here objections, to the price of a narrowing of the customer
base to the JEE market. Second, not only the model but also the code
generator was re-engineered to become open and modular. In essence,
today WebRatio has no hard-wired code generation logic. All the rules
in the model-to-code transformations can be replaced, which permits
developers to incorporate their optimizations in the code generator and
not in the generated application. As a side effect, optimizations be-
come part of the MDE environment and thus are more reusable across
projects and teams.

• Capturing the user interface: being able to reproduce exactly any
user experience required by customers was another mandatory feature.
Given the sheer variety of graphical and layout properties that charac-
terize the look & feel of the user interface, it was immediately apparent
that modeling the presentation aspects at an abstract level was impos-
sible. Therefore, the approach was to delegate presentation to the code
generator and implement template-based model-to-code transformation.
With this technique, the model-to-code generator is modularized in
separate generation layers: one for the data extraction logic, one for
the business logic, and one for the presentation logic. The presenta-
tion generator consists of template rules, i.e., examples of presentations
(at multiple granularity levels: page, content component, down to the
individual input field or data value) marked-up with placeholders for
dynamic code injection. This capability enabled WebRatio to win the
acceptance of reluctant customers by grabbing their presentation style
directly from their own web sites and building in front of them a custom
application dressed with such a presentation.

• Usability of the modeling language and tool : as already explained, a
great effort was devoted to equip the DSL with inference rules reducing
the burden of model editing. This was not enough, though. After a

26

period of usage, we noticed that customers started creating projects far
more complex and larger than we expected, which put under strain the
usability of the model diagram and of the editor. Apparently trivial
issues like propagating in real time to the hypertext model changes in
the data model became major bottlenecks and required a thorough re-
engineering of the tool. Also, WebML diagrams were conceived to fit
completely in one screen, a habit that customers appreciated as a way
to keep the global structure of the front-end always in view. However,
with diagrams consisting of hundreds of pages and components, many
usability measures became mandatory, including: fast element search,
commands to jump from one concept to a logically related one, context-
sensitive model checking, and selective code generation.

• Maintenance support at the model level : the deployment of MDE to
large teams and long-lived projects must face the comparison with all
the facilities that code-based development offers off-the shelf to sup-
port the maintenance phase. Among the mandatory features model-
based versioning, teamwork and change impact analysis were promi-
nent. Change impact analysis must be able to traverse the abstraction
layers of MDE. In WebRatio, it never happens that developers modify
the generated code, and thus we had not the problem of tracing changes
from the code to the model. But organizations do update the schema
of their databases after an application is deployed , and thus we had to
introduce functionality for tracing a change in the data format to the
content model and from the content model to the hypertext model.

• Delivery support : prototype MDE tools that provide coverage of the
development but leave the developer alone in the deployment phase face
dramatic reduction in adoption. Automation, configuration and con-
tinuous deployment on different platforms (locally for testing purposes,
on enterprise application servers, and on the cloud) are considered rel-
evant benefits by developers.

6.2. Non-technical Factors

The other factors that do not strictly depend on technical features, but
that have been raised either from the customer base or by the sales personnel
and business partners that try to sell the product to customers include:

27

• Considering the attitude of IT staff towards MDE: developers are typi-
cally skeptical because they see the risk of being limited in their freedom
and of finding sooner or later some limits in the approach that would
prevent them to cover detailed requirements; on the other hand, ana-
lysts prefer to adopt their less formalized approaches to requirements
and design specification and are typically worried that a detailed model
design can require them a much higher effort.

• Identifying the right role to discuss with: the main difficulty has been to
identify the right role in the customer company to speak to. This may
be a general problem for software vendors, but we think it’s particularly
critical for model-driven design tools: especially for large projects , the
people in charge of the purchase decision power typically do not have
the competencies and the capability for judging the quality and real
impact of the tools, and thus rely on IT staff for an opinion. In turn,
for IT people the attitude problem may play a role in the comments
they provide.

• Avoiding the vendor lock-in syndrome: one of the main concerns of
customers is the risk of getting locked into a set of technologies and
models that are not standard and/or mainstream. This is perceived
as highly dangerous both for the enterprise and for personal reasons,
because the people taking a decision like this are worried about possi-
bility of being considered liable for a decision taken without considering
the impact on the company. To avoid this risk, WebRatio has lead a
standardization initiative regarding the WebML language within the
Object Management Group (OMG)4. This action is resulting in stan-
dardizing the Interaction Flow Modeling Language (IFML) notation,
which directly descends from WebML.

• Identifying the right size for a starting project: the real challenge is
to have the opportunity of making the customer able to perceive and
experiment the advantages of MDE on real projects in some real ap-
plication scenario. For achieving that, it is crucial to identify a good,
limited application scenario where to put MDE at work. This first sce-
nario should neither aim at disrupting the activities of the company,

4http://www.omg.org

28

nor being considered too much collateral. The typical size is small and
it usually consists of a small extension upon a large-scale running ap-
plication that the customer has already being using for a while. This
allows the customer to have a clear estimate on the cost of the exten-
sion, and hence appreciate the advantage of the new approach. After
a step like this, the customer is typically more open to adopting the
approach to address more challenging or bigger projects.

• Motivating the company and the developers to address the learning
curve: since most of the IT staff do not have expertise and knowl-
edge on MDE. Therefore, the learning curve of the approach and of the
specific modeling language is usually rather challenging and expensive.
Indeed, one should consider that working with MDE implies not only
learning new techniques and technologies, but also adopting a new way
of working and addressing problems.

In this Section we discuss some issues that we felt as controversial during the
development of WebML and WebRatio, and report on the way in which we
addressed them.

6.3. General Purpose or Domain Specific?

One of the core decisions of any MDE approach is the choice between the
two principal ways of conceiving a modeling language: making it universal,
so that it can describe a very broad (almost infinite) variety of subjects;
or making it speak the language of a particular domain, so that it resounds
familiar to the average person educated in that area.

The former class of languages goes under the denomination of General
Purpose Modeling Languages (GPMLs), of which the most popular one is
probably UML. The latter class includes Domain Specific Modeling Lan-
guages (DSMLs or DSLs), which are built with a specific application area
in mind; their mission is to be natural and easy to use for domain experts,
or even for non-experts. Probably, the best known DSLs are HTML, SQL,
and MatLab. Even if GPMLs and DSMLs concur to the solution of the
same problem, a direct comparison between them must be taken with care,
as there are overlaps between the two families.

On their positive side, GPMLs have a broad applicability, widespread
adoption, and good portability across tools. The flip side of the coin is
that GPMLs cannot be precise in the description or tend to be too verbose.

29

Trading expressive power for generality has an impact on code generation
too. If the language lacks domain-specific focus, code generation can only
be partial in real settings and the missing domain-specific semantics must be
added “by hand” by the domain expert.

DSMLs have strengths and weaknesses quite symmetrical to GPMLs.
DSLs can be used only for the domain they are designed, which also entails
having a smaller community of adopters, the absence of a shared standard, or
the proprietary nature of the language. The greatest pros are: a more precise
semantics (which is a key to achieve so-called total code generation [Ise10]);
and the closeness to the domain, which turns into more intuitive and easy
to learn concepts and notations and more precise semantics. As an example
of the former aspect, Figure 11 compares the representation of a Web page
containing an index of products, using a standard UML class diagram and
WebML. In WebML, which is natively a DSL for Web applications, some
model features can be left implicit in the notation, because they are part of
the very definition of the language primitives.5 These are the reasons that
lead us to defining a new DSL for the Web.

Figure 11: Model of a Web page containing an index of products in a standard UML class
diagram and in WebML

5The example of Figure 11 refers to the usage of a standard UML class diagram.
Obviously, it is possible to use UML extension mechanisms to reproduce exactly the same
notation and conciseness of WebML, but this would amount to designing a DSL in UML.

30

6.4. Would you rather code-generate or model-interpret?

When it comes to turning a model into something executable, two ap-
proaches are possible: code generation and model interpretation. The elec-
tion of code generation by WebRatio has been quite clear since the beginning,
but it has been corroborated through the years also by the interaction with
customers and developers, who allowed us to distil the three main reasons
for preferring code generation over model interpretation.

Reason 1: customers can choose their execution environment.
With model interpretation customers are required to install a new propri-
etary runtime platform (the interpreter) in their IT infrastructure. This
means they have to add a new subject in their IT architecture policies and
rely to a proprietary platform for managing non-functional requirements like
security and performance. On the other hand, with generated applications
are completely separate from the modeling/design environment. Thus one
can create and fine-tune a code generator that is able to build applications
perfectly fitting a particular runtime architecture. In WebRatio, for exam-
ple, generated artifacts are standard 3-tier JEE applications, built only by
standard Java libraries. In this way, any company already using a Java ap-
plication server can easily deploy and use them. This allows customers to:

• be compliant to their IT architecture policies.

• choose the best execution environment among a wide range of very
popular options instead of being limited to a single platform.

• satisfy security, performance and other non-functional requirements by
exploiting the capabilities of a standard execution environment, with-
out having to rely on a proprietary solution.

Eliminating any proprietary runtime has been central in our experience;
any organization having strict IT architecture policies, and almost all the
public bodies and companies working in the financial sector simply did not
consider MDE, if this approach entailed changing their runtime management
policies. So we learnt to keep MDE at design time, and make it disappear at
runtime.

Reason 2: two degrees of freedom are better than one. Code
Generation gives you two degrees of freedom: the model and the generator
(while with model interpretation you have only the model). Thus, in order to
meet all the functional and non-functional requirements of the final solution

31

you can work both on the model and the generation rules. The second
degree of freedom is particularly useful when addressing the layout and the
visual identity of the application. Normally these aspects cannot be modeled,
so they are coded in some place of the MDD environment. In a model
interpretation approach these aspects are managed by the runtime platform
(the interpreter) usually by the means of a set of predefined templates and
CSS files, while in a code generation approach these aspects are managed
by a subset of generation rules. By creating custom generation rules for
the presentation layer, customers have many more possibilities to get a final
application tailored to their visual requirements.

Reason 3: no vendor lock-in in the deployed application. Al-
though this is an issue every vendor wants to avoid, it may happen that
a customer no longer wishes to use that particular MDE environment (or
MDE at all). In this case, the only way for a customer to avoid maintenance
problems is to have the possibility to open and change any single line of code
of its applications without the development environment. This is possible
only through a code generation approach (this condition is necessary but not
sufficient: the generated code need also to be human-readable) because with
model interpretation the customer will always have to deal with the propri-
etary interpreter. For many customers this is a key factor in the final go /
no go decision.

Finally, code generation is not a panacea. To deploy generated applica-
tions, we had to face recurrent objections, which lead to a better engineering
and more functionality in the WebRatio development environment.

• Code generation is a time-consuming and complex process, especially
for big projects, with respect to immediate interpretation: it is not
always true, if the MDD environment already includes all the needed
rules, generation can be a 1-click task.

• A generated application is more difficult to deploy: it is not always
true, if the generated application is for example a standard Java web
application, you can immediately deploy it on any standard Java ap-
plication server (the same would be valid for .NET platform)

• In a Code Generation approach you cannot debug the model: it is
not always true, some MDD environments are able to open a socket
connection with the application and let you debug the model while

32

executing the application (see for example the latest release of our
MDD environment)

6.5. Is SaaS good for MDE?

One of the challenges that MDE is facing nowadays is the move of the
software industry towards cloud-based software solutions and towards soft-
ware as a service (SaaS) offerings. This is also a good opportunity for MDE
vendors: their tools and model execution platforms could be deployed as SaaS
and made available with different pricing models to customers (subscription,
pay-as-you-go, consumption-based, and so on). On the other hand, MDE
tools will be asked more and more to include capability for running and
deploying applications on the cloud.

7. Conclusions and Outlook

In this paper we have presented our experience with the MDE tool We-
bRatio and the associated DSL called WebML. We discusses the basic fea-
tures of the language and of the tool, and then we delved into a set of lessons
learned, customer experiences and usage information.

We think our experience is a significant one in the MDE world because we
describe a tool that is completely based on modeling, is oriented to a specific
domain, and has been around long enough to collect an interesting set of
success stories and insights that can be considered by MDE practitioners
when they opt to move towards implementing their own DSL and tools.

Despite the successes, WebRatio still has to face a lot of challenges and
ambitious objectives. Among others, we wish to cite three research and
industrialization directions that are ongoing.

The first one is standardization: at the purpose of tackling the perceived
risks of vendor lock-in, we are pursuing a standardization path for WebML.
We joined OMG6 two years ago, and we made OMG issue a request for
proposal (RfP) for a user interaction modeling language, and we are now
finalizing our standardization proposal in response to the RfP, called IFML
(Interaction Flow Modeling Language)7 and inspired by the WebML lan-
guage, taken to the broader scope of user interaction description. From a
technical and scientific perspective, we feel that our contribution can fit very

6Object Management Group: http://www.omg.org .
7Interaction Flow Modeling Language (IFML): http://www.ifml.org .

33

well into the overall OMG vision, as WebML can perfectly integrate with
and complement languages well established as international standards such
as UML or the domain-specific ones like SOAml, SysML, BPMN and so on
(actually, integration with BPMN has been already accomplished both at the
language and at the tool implementation levels). The problem of defining
a generalized standard for user interaction design is definitely challenging,
but we think we will be able to provide some good value on this. Obviously,
we do not want the upcoming standard (and the associated standardization
process) to be something supported only by ourselves. We want to gather
interest on the problem and to collect contributions, ideas, and feedback on
the solution as broad as possible. The partnership with OMG is crucial be-
cause it will foster the discussion among the big players in the software and
modeling market.

Another objective we aim at is towards building a lively and useful user
community around the tool. At this purpose, we have recently released the
WebRatio Store, an online store completely integrated within the toolsuite,
where people can download (and also contribute) components, units, graph-
ical styles useful for their work.

Finally, we are facing the big technical challenge of enabling our code
generation platform to cover efficient cloud-based deployment of applications.
Future plans include also porting our services to the clouds, so as to enable
SaaS usage scenarios for WebRatio.

References

[ABB+07] Roberto Acerbis, Aldo Bongio, Marco Brambilla, Massimo Tisi,
Stefano Ceri, and Emanuele Tosetti. Developing eBusiness Solu-
tions with a Model Driven Approach: The Case of Acer EMEA.
In Luciano Baresi, Piero Fraternali, and Geert-Jan Houben, edi-
tors, Intl. Conf. on Web Engineering (ICWE 2007), volume 4607
of Lecture Notes in Computer Science, pages 539–544. Springer
Berlin / Heidelberg, 2007.

[ABB+08] Roberto Acerbis, Aldo Bongio, Marco Brambilla, Stefano Butti,
Stefano Ceri, and Piero Fraternali. Web applications design and
development with webml and webratio 5.0. In Richard F. Paige
and Bertrand Meyer, editors, TOOLS (46), volume 11 of Lec-
ture Notes in Business Information Processing, pages 392–411.
Springer, 2008.

34

[BCF02] Marco Brambilla, Sara Comai, and Piero Fraternali. Hypertext
Semantics for Web Applications. In SEBD, pages 73–86, 2002.

[CFB00] Stefano Ceri, Piero Fraternali, and Aldo Bongio. Web Modeling
Language (WebML): a modeling language for designing Web sites.
In Proceedings of the 9th international World Wide Web confer-
ence on Computer networks : the international journal of com-
puter and telecommunications netowrking, pages 137–157, Ams-
terdam, The Netherlands, 2000. North-Holland Publishing Co.

[CFB+02] S. Ceri, P. Fraternali, A. Bongio, M. Brambilla, S. Comai, and
M. Matera. Designing Data-Intensive Web Applications. Morgan
Kaufmann, USA, 2002.

[FCBC10] Piero Fraternali, Sara Comai, Alessandro Bozzon, and Gio-
vanni Toffetti Carughi. Engineering rich internet applications with
a model-driven approach. TWEB, 4(2), 2010.

[FCTT06] Piero Fraternali, Stefano Ceri, Massimo Tisi, and Emanuele
Tosetti. Developing ebusiness solutions with a model driven ap-
proach,. In Proc. International Conference on Industrial MArket-
ing and Purchasing, Milan, Italy, Semptember 2006.

[Ise10] Martijn Iseger. Domain-specific model-
ing for generative software development.
http://www.itarchitect.co.uk/articles/display.asp?id=161, July
2010.

[KP09] S. Kelly and R. Pohjonen. Worst practices for domain-specific
modeling. Software, IEEE, 26(4):22 –29, july-aug. 2009.

[Sel03] Bran Selic. The pragmatics of model-driven development. IEEE
Software, 20:19–25, 2003.

35

